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An extension of Keldysh’s theory [l] of rolling of a wheel with an elastic pneu- 
matic tire to curvilinear motion at any speed along a trajectory of arbitrary 

curvature is proposed. 

Hypotheses ofrolling without slippage were formulated and appropriate equations 
of nonholonomic relations derived in [l] with the aim of establishing the conditions of 
aircraft landing gear shimmi excitation on the runway. validity of that theory for 
curvilinear motion was questioned in f2]. On the assumption of validity of theory [l] 
for curvilinear motion the authors of [3] had to restrict their study to the motion along 
a “path of fairly small curvature at not very high speed”. 

A method based on the theory Cl] and study [3] is proposed here for investigating 
the programmed motion along a trajectory of arbitrary curvature at any speed. The 
programmed motion is understood here to be the motion along a specified (progranun- 
ed) curve of curvature k = R-l at the point K of intersection of the straight line 

drawn through the wheel center C (Fig. 1) in the median plane with the road plane. 
We used the notation: UZxgz for the inertial system of coordinates; 0 for the 

tire footprint center; x, Y and x*, Y* for the abscissas and ordinates of points K and 

0 in the OrsYs -system; i, j and i,, jr for unit vectors of axes 45, OIY and 
Kxl, KY,; Cl for heading; X. for the wheel angle of tilt produced by tire deformation; 

E for the linear lateral deformation of the tire; cp for the tire angular deformation 
(twist); F for the Line of tire rolling; s and sx for the lengths of arcs of tranjector- 
ies of point 0 and Kl and Oz’Y’ for the coordinate system the direction of whose 

axes differs from that of the OIx and OrY by the angle 0 + ‘p. We have the fol- 

lowing relations: 

vk = is’ + jY” = iIv + i,u, v = St’ = 5. cOs e + y’ sin 8 (I) 

U=--~,*sine+y’cose, Vo=ix*‘+jy~=i’[x,‘cOs(e+cp)+ 

y*’ sin (0 ‘-t_ cp)] + j’I- z; sin (0 + cp) + y,’ cos (0 + T)l = ia (0 + 
E0.J + jr (U - g’) 

s -- (SK’ $-E%.)cosrp+(U-_‘)sin(E, x,=s-kr;sinB, y,=y- 
E cos 0 

The first of Keldysh’s hypotheses is expressed by the equation 

-z*’ sin (0 -{- cp) -t_ Y*’ co9 (e + cp) = 0 (2) 

which according to (1) represents the condition (v,,){,, = 0 which for g = 0 and 
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<p = 0 becomes the usual equation --x’ sin 3 + y* ccs 0 = 0 of nonholonomic re- 
lationships for an absolutely rigid body which implies impossibility of lateral slipping. 

Owing to tire deformation the trajectories of points 0 and K are different. We 
assume that the curvature of line r is an additive function of deformation parameters, 
dnd, in conformity with the linear theory of elasticity, set 

d (0 + cp) / ds = k + f (E, 9, x). f (E, (p, x) = a$ - & - yx 

where a, b, y are Keldysh’s constants. 
The equations of nonholonomic relationships linearized wrth respect to deforma- 

tions are of the form 

5’ sin 0 - y’ cos 8 + (~2’ cos I3 + y’ sin 0) ‘p _1- E’ = 0 (3) 
0’ + 9’ - k [I’ cos 0 + y’ sin 0 + ‘p (- x’ sin 8 + y’ cos 6) + @*I - 

(I’ co9 0 + y’ sin 0) (aE - fiq - yx) = 0 

In the absence of deformations (E = 0, ‘p = 0, and y = 0) the second of Eqs. 

(3) becomes the identity 0’ = kv. 

We denote the mass and weight of the wheel by m and N = mg ; the diametral 
and axial moments of inertia by A and B ; the coordinates of the wheel center C 
in the coordinate system o,xyz by +, y,, zc ; the wheel radius by P , and the 

angle of the wheel proper rotation by 6 . The kinetic potential is defined by formula 

L = -$ (zc’Z + yc’2 + zc’2) + + (x.2 +- 0’2 COG X) + 

c (6’ -+ 0’ sin x;e - Nz,, zc = r cos x 

Assuming, as in [1,3,4], that the variables E, (9, x are small, we obtain the 

equation of motion of the form 

m (U. + V0’ - rx” $ r0’2 x) + af + aNx = 0 

A0” + Box’ - bq = 0 

(4) 

AX” + [N (p $ or - r) - (B - A) 8’2]x - Bd3’ + (ar + UN) E = 0 

U - Vcp - E’ = 0, 0’ + cp’ - k (V + @?I*) - V (at - f5q - TX) = 0 

(F = aE $ oNx, M, = bq, M, = -aNE - pNx) 

where v = or = const represents the variable v in the case of uniform motion, and 
the constant quantities a, b, u, p are proportional to partial derivatives of the lateral 

force F, moments M, and M, with respect to corresponding deformations [I]. 

Since 5 < R, hence from the last equation of system (4) we have 

e’=n-cP’+V(a+R-a)%-BV~--VX, Q-V/R (5) 

The remaining eqations of this system are of the form 

f” + [am+ + Vs (a + lP2)I 5 - q” + (Og + da - yp) X - BV’Cp = (6) 

-VP 

V+&~‘E+ b-4-9 + (YJ’ - BoA-1) x’ - V (a + Rd) 5’ $ 
* 4 =Q’ 

AX” + [ByoV + N (p + ur - r) - (B - A)Q2]x + Bocp’ $ 
BfioVq~ + [ar + UN - BoV (a + Rm2)] E = BoQ 

u= 5*-j- vcp 
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Let us consider the particular SOlutiOn of system (6), (5) when point K moves along a 
circle of radius R 

u, = 0, ‘PO = 0, 0”’ = 51 + V (a + Re2) E. - yVxo = const 

go = A1 I A = const, X0 = AZ / A = const 

A1 =. mVQ [A!% + Bagr-l - N (I. - rv - p)], AZ = ---T/Q [aBr_l + 

m (ar + WI 
A=-AmQ4+Q2[a(B-~+mr2)+mN(r-p)-R~Nr-1- 

AmaV2] + V2 [mNcc (r - r(s - p) - BuaNr’ - my (ar + UN) - 
Bayr-‘1 + N [a2N + a (r - p)] 

We call this equation unperturbed. Note that AI, < 0 always, The remaining quanti- 
ties are considered for the following numerical data: 

m = 98.ikg, r = 0.5 m, A = 6.131 kgm2, B = 2A, u = 98100 kgs-2, 

b = 3924kgm?sr2, CI = 3Om+, b = IOm-l, y = 1 m-i, p = O.lm, o = 0.6 

We vary parameters V and R. Computations show that Ai > 0. Hence &,A > 0 
and xOA <O. 

The intersection of surface A = A (v, R) with the plane R = const, i. e. the 
line A = AR (V) of the one-parameter set of curves with R as the parameter is 

shown in Fig.2. When V E (0, V,) we have to > 0 and X0 < 0, and when 
V > V, then E,, < 0 and X0 > 0. The dependence of &, and X0 on R for 

V = 5, 15, and 50 m/s is shown in Fig. 3 by curves 1, 2, and 3 , respectively. 
Function V = V, (R’l r) is shown in Fig.4 by the solid line. As parameter R is 

increased, V, first rapidly decreases and, then, becomes virtually stable. 
To test the stability of the unperturbed solution with respect to variables U, f3’, E, 

cp and X we consider the variational equations that correspond to (5) and (6). We seek 
a solution of the system of variational equations in the form of products of a constant 
factor by exp (pt) and obtain the following characteristic equation: 

P6 + UlP6 + U2P4 + U3P3 + U&-J2 + UsP + U6 = 0 

U 1 =bV, a2 = u3l + bA-l + aV2 + Q2, a31 = vb,2r-2 + B, + 
(1 - b,) Q2 

b, = BA-‘, B, = urn-’ + B2r - mN,, B, = (ur f aN)A-‘, 

NI = g (r - r6 - p)A-’ 

a3 = alUS a4 = bB,A-1 - B, + V4ab,2r-2 + Va [bb,yA-‘r-l + B,y f 
ab,2m-1r-2 f ctb (1 - b,)A-’ - amN,] + VW [b,2r-z + cz (1 - b,)] - 
CP [B5 f 2 (b, - 1) bA_l f mNJ f (1 - b,) Q4, B, = B,ag + uNI 

B, = B, + ub,m-‘rel, BS = B,r + a (b, - 1) m-l, N, = b,agr-’ - mNI 

a5 = a, ( V2B4b,f1 - Q2B, - B3), a, = -bmAWaA 

Numerical analysis shows that the unperturbed motion is stable when the single 
condition a, > 0, i.e. when A < 0. Hence the mode V < V,, to > 0, and X0 < 0 
is unstable, and mode V > V,, E. < 0, X0 > 0 stable. In the stable motion mode the 
wheel with a pneumatic tire tilts away from the circle center owing to the predomin- 
ant effect of the centrifugal force moment mV% / R . 

In the same formulation but using the hypothesis of outward bias (instead of that 
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of Keldysh) in an unperturbed motion for the variables we have 

mV=Q (AC-22 - Nr) 
‘O = al [Nr + (3 - A + mra) CPJ ’ 

&)z--. 
QV (3 + pry 

r[Nr+(B-A+mmr~)Q2] 

where n, = const > 0 is the coefficient of outward bias, always 3 > A, x0 < 0; U. 

is an alternating-sign quantity. A manifold of circular motions of the wheel is stable 
when conditions 

v > v,, v > VI 
Voa - AN+ [B (3 + mid) - A (B - A + m9)ra I R8]-I 

VIZ = ANr3 [B (B - A) + A (2A - B)ra / @J--r 

are simultaneously satisfied, In the case of a disk we have the single condition Vs > 

2gr and then 

&I = -312va (Rg + tilqv% I R) 

In the case of an absolutely rigid wheel moving along a circle with observance of 
classic nonholonomic relationships of rolling, the small tilt angle is determined by 
the same formula as in the case of application of the outward bias hypothesis, and 
the condition of conservative stability of the manifold of circular motions is of the 
form V > Vo. 

For the disk 

which for R ---f CO yields the known conditions Va > gr I 3 of rectilinear motion. 
Let us compare the stability of the wheel circular motion for various models of 

interaction between the wheel periphery and the road surface. In all three cases the 
wheel can move along the circle at any speed. The stability region is bounded in the 
RV plane on the left by the straight line R = r and from below by the curve v = 

V, (R). The lower stability boundaries are shown in Fig. 4, where the solid curve re- 

lates to the elastic wheel (in conformity with Keldysh’s theory) and the dash lines I 
and 2 relate to the outward bias hypothesis for a rigid wheel, 

According to the outward bias hypo~~s V, (R) = eonst the largest stability 
region for a specific wheel obtains for the rigid wheel, when the curve V = V, (R) 

has a horizontal asymptote V = (gr / 3)“‘. When RI r > 6, function V, (R) de- 

creases so slowly for both the elastic and rigid models that it can be considered as 
virtually constant. The difference in the stability regions of the three indicated 

models is only quantitative. 

The author thanks V. V. Rumiantsev and participants of the seminar guided by 
him for discussing the results of this investigation. 
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